Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 137
1.
Pain ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38713812

ABSTRACT: Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo/in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.

2.
J Pain ; : 104516, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38580101

Chronic pain and mental health issues occur at higher rates in Veterans than the general population. One widely recognized mental health issue faced by Veterans is post-traumatic stress disorder (PTSD). Trauma symptoms and pain frequently co-occur and are mutually maintained due to shared mechanisms. Many Veterans are also parents. Parental physical and mental health issues significantly predict children's chronic pain and related functioning, which can continue into adulthood. Only 1 U.S.-based study has examined pain in the offspring of Veterans, suggesting a heightened risk for pain. Research to date has not examined the associations between trauma and pain and the dyadic influences of these symptoms, among Veterans, and their children. The current study aimed to describe pain characteristics in Canadian Armed Forces Members/Veterans with chronic pain and their offspring (youth and adult children aged 9-38). Cross-lagged panel models were conducted to examine dyadic relationships between pain interference and trauma symptoms of Canadian Armed Forces Members/Veterans and their offspring. Over half of adult offspring and over one-quarter of youth offspring reported chronic pain. Results revealed effects between one's own symptoms of PTSD and pain interference. No significant effects of parents on offspring or offspring on parents were found. The findings highlight the interconnection between pain and PTSD consistent with mutual maintenance models and a lack of significant interpersonal findings suggestive of resiliency in this unique population. PERSPECTIVE: We characterized chronic pain in the offspring of Canadian Armed Forces Members/Veterans with chronic pain and examined dyadic relationships between PTSD symptoms and chronic pain interference. Findings revealed that PTSD symptoms and pain interference were related within Veterans and offspring, but no dyadic relationships were found, which could reflect resiliency.

3.
J Neurosci ; 44(17)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658164

Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.


Cerebellum , Pain , Humans , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Animals , Pain/physiopathology , Pain/psychology , Emotions/physiology
4.
Mult Scler Relat Disord ; 86: 105607, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631073

BACKGROUND: Aging-related processes contribute to neurodegeneration and disability in multiple sclerosis (MS). Biomarkers of biological aging such as leukocyte telomere length (LTL) could help personalise prognosis. Pregnancy has been shown to be protective against disability accumulation in women with MS, though it is unclear if this effect relates to aging mechanisms or LTL. OBJECTIVES: This study aimed to cross-sectionally characterise LTL in a cohort of individuals with MS, and to correlate LTL with disability severity and pregnancy history. METHODS: We extracted DNA from the whole blood of 501 people with MS in Melbourne, Australia. Expanded Disability Status Scale (EDSS) score and demographic data, as well as pregnancy history for 197 females, were obtained at sample collection. Additional data were extracted from the MSBase Registry. LTL was determined in base pairs (bp) using real-time quantitative polymerase chain reaction. RESULTS: A relationship between EDSS score and shorter LTL was robust to multivariable adjustment for demographic and clinical factors including chronological age, with an adjusted LTL reduction per 1.0 increase in EDSS of 97.1 bp (95 % CI = 9.7-184.5 bp, p = 0.030). Adjusted mediation analysis found chronological age accounted for 33.6 % of the relationship between LTL and EDSS score (p = 0.018). In females with pregnancy data, history of pregnancy was associated with older age (median 49.7 vs 33.0 years, p < 0.001). There were no significant relationships between adjusted LTL and any history of pregnancy (LTL increase of 65.3 bp, 95 % CI = -471.0-601.5 bp, p = 0.81) or number of completed pregnancies (LTL increase of 14.6 bp per pregnancy, 95 % CI = -170.3-199.6 bp, p = 0.87). CONCLUSIONS: The correlation between LTL and disability independent of chronological age and other factors points to a link between neurological reserve in MS and biological aging, and a potential research target for pathophysiological and therapeutic mechanisms. Although LTL did not significantly differ by pregnancy history, longitudinal analyses could help identify interactions with prospectively captured pregnancy effects.


Leukocytes , Multiple Sclerosis , Humans , Female , Adult , Multiple Sclerosis/physiopathology , Multiple Sclerosis/genetics , Multiple Sclerosis/blood , Middle Aged , Pregnancy , Cross-Sectional Studies , Male , Telomere , Severity of Illness Index , Telomere Shortening/physiology , Australia , Reproductive History , Aging/physiology
5.
iScience ; 27(4): 109395, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38510122

Although aging, repeat mild traumatic brain injury (RmTBI), and microbiome modifications independently change social behavior, there has been no investigation into their cumulative effects on social behavior and neuroplasticity within the prefrontal cortex. Therefore, we examined how microbiome depletion prior to RmTBI affected social behavior and neuroplasticity in adolescent and adult rats. Play, temperament analysis, elevated plus maze, and the hot/cold plate assessed socio-emotional function. Analyses of perineuronal nets (PNNs) and parvalbumin (PV) interneurons was completed. Social-emotional deficits were more pronounced in adults, with microbiome depletion attenuating social behavior deficits associated with RmTBI in both age groups. Microbiome depletion increased branch length and PNN arborization within the PFC but decreased the overall number of PNNs. Adults and males were more vulnerable to RmTBI. Interestingly, microbiome depletion may have attenuated the changes to neuroplasticity and subsequent social deficits, suggesting that the microbiome is a viable, but age-specific, target for RmTBI therapeutics.

6.
J Neurotrauma ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38497766

Traumatic brain injuries (TBIs) are a large societal and individual burden. In the first year of life, the vast majority of these injuries are the result of inflicted abusive events by a trusted caregiver. Abusive head trauma (AHT) in infants, formerly known as shaken baby syndrome, is the leading cause of inflicted mortality and morbidity in this population. In this review we address clinical diagnosis, symptoms, prognosis, and neuropathology of AHT, emphasizing the burden of repetitive AHT. Next, we consider existing animal models of AHT, and we evaluate key features of an ideal model, highlighting important developmental milestones in children most vulnerable to AHT. We draw on insights from other injury models, such as repetitive, mild TBIs (RmTBIs), post-traumatic epilepsy (PTE), hypoxic-ischemic injuries, and maternal neglect, to speculate on key knowledge gaps and underline important new opportunities in pre-clinical AHT research. Finally, potential treatment options to facilitate healthy development in children following an AHT are considered. Together, this review aims to drive the field toward optimized, well-characterized animal models of AHT, which will allow for greater insight into the underlying neuropathological and neurobehavioral consequences of AHT.

7.
Neurotrauma Rep ; 5(1): 74-80, 2024.
Article En | MEDLINE | ID: mdl-38463419

Traumatic brain injuries (TBIs) and concussions are prevalent in collision sports, and there is evidence that levels of exposure to such sports may increase the risk of neurological abnormalities. Elevated levels of fluid-based biomarkers have been observed after concussions or among athletes with a history of participating in collision sports, and certain biomarkers exhibit sensitivity toward neurodegeneration. This study investigated a cohort of 28 male amateur athletes competing in "Masters" competitions for persons >35 years of age. The primary objective of this study was to compare the levels of blood and saliva biomarkers associated with brain injury, inflammation, aging, and neurodegeneration between athletes with an extensive history of collision sport participation (i.e., median = 27 years; interquartile range = 18-44, minimum = 8) and those with no history. Plasma proteins associated with neural damage and neurodegeneration were measured using Simoa® assays, and saliva was analyzed for markers associated with inflammation and telomere length using quantitative real-time polymerase chain reaction. There were no significant differences between collision and non-collision sport athletes for plasma levels of glial fibrillary acidic protein, neurofilament light, ubiquitin C-terminal hydrolase L1, tau, tau phosphorylated at threonine 181, and brain-derived neurotrophic factor. Moreover, salivary levels of genes associated with inflammation and telomere length were similar between groups. There were no significant differences between groups in symptom frequency or severity on the Sport Concussion Assessment Tool-5th Edition. Overall, these findings provide preliminary evidence that biomarkers associated with neural tissue damage, neurodegeneration, and inflammation may not exhibit significant alterations in asymptomatic amateur athletes with an extensive history of amateur collision sport participation.

8.
Brain Behav Immun ; 118: 480-498, 2024 May.
Article En | MEDLINE | ID: mdl-38499209

Trigeminal neuropathic pain is emotionally distressing and disabling. It presents with allodynia, hyperalgesia and dysaesthesia. In preclinical models it has been assumed that cephalic nerve constriction injury shows identical molecular, cellular, and sex dependent neuroimmune changes as observed in extra-cephalic injury models. This study sought empirical evidence for such assumptions using the infraorbital nerve chronic constriction model (ION-CCI). We compared the behavioural consequences of nerve constriction with: (i) the temporal patterns of recruitment of macrophages and T-lymphocytes at the site of nerve injury and in the trigeminal ganglion; and (ii) the degree of demyelination and axonal reorganisation in the injured nerve. Our data demonstrated that simply testing for allodynia and hyperalgesia as is done in extra-cephalic neuropathic pain models does not provide access to the range of injury-specific nociceptive responses and behaviours reflective of the experience of trigeminal neuropathic pain. Similarly, trigeminal neuroimmune changes evoked by nerve injury are not the same as those identified in models of extra-cephalic neuropathy. Specifically, the timing, magnitude, and pattern of ION-CCI evoked macrophage and T-lymphocyte activity differs between the sexes.


Neuralgia , Trigeminal Neuralgia , Rats , Male , Female , Animals , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Trigeminal Neuralgia/metabolism , Neuralgia/metabolism , Trigeminal Ganglion/metabolism , Disease Models, Animal
9.
J Neuroinflammation ; 21(1): 14, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38195485

Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.


Brain Injuries, Traumatic , Brain Injuries , Toxoplasmosis , Humans , Animals , Cats , Female , Male , Mice , Neuroinflammatory Diseases , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Toxoplasmosis/complications , Brain
10.
J Cereb Blood Flow Metab ; 44(4): 542-555, 2024 Apr.
Article En | MEDLINE | ID: mdl-37933736

Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.


Brain Concussion , Male , Female , Rats , Animals , Bevacizumab , Vascular Endothelial Growth Factor A/metabolism , Rats, Sprague-Dawley , Disease Models, Animal
11.
Neurobiol Pain ; 14: 100145, 2023.
Article En | MEDLINE | ID: mdl-38099278

Chronic pain develops following injury in approximately 20% of adolescents, at twice the rate in females than males. Adverse childhood experiences also increase the risk for poor health outcomes, such as chronic pain. Emerging literature suggests the cerebellum to be involved in pain processing, however detailed explorations into how the cerebellum contributes to pain are lacking. Therefore, this study aimed to characterise chronic pain outcomes and cerebellar gene expression changes following early life stress and injury in both sexes. The adverse childhood experience of neglect was modelled using a maternal separation (MS) paradigm, which was combined with a subsequent injury (mild traumatic brain injury (mTBI) or plantar incision surgery) in adolescent male and female Sprague-Dawley rats. We measured behavioural nociceptive sensitivity, systemic modulators of pain such as calcitonin gene-related protein (CGRP) and Substance P, as well as gene expression of IL1ß, GFAP, GR, MR, GABRA1, CNR1, MAOA, and DAT1 in the cerebellum to examine associations between pain and neuroinflammation, the stress response, inhibitory neurotransmission, and monoaminergic function. We found increases in mechanical nociceptive sensitivity following plantar incision surgery. Sex differences were observed in anxiety-like behaviour and neuroinflammation, whereas systemic pain modulators showed cumulative effects with the addition of stressors. Most interestingly however, the increases in nociceptive sensitivity were associated with the suppressed expression of cerebellar genes that regulate stress, inhibition, cannabinoid function, and dopaminergic function, alongside sex-dependent distinctions for genes involved in inflammation and injury. This study highlights a novel link between nociception and molecular function in the cerebellum. Further investigation into how the cerebellum contributes to pain in males and females will facilitate novel therapeutic insights and opportunities.

12.
Epilepsia Open ; 8(4): 1523-1531, 2023 Dec.
Article En | MEDLINE | ID: mdl-37805809

OBJECTIVES: Growing evidence demonstrates a relationship between epilepsy and the circadian system. However, relatively little is known about circadian function in disease states, such as epilepsy. This study aimed to characterize brain and peripheral core circadian clock gene expression in rat models of genetic and acquired epilepsy. METHODS: For the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) study, we used 40 GAERS and 40 non-epileptic control (NEC) rats. For the kainic acid status epilepticus (KASE) study, we used 40 KASE and 40 sham rats. Rats were housed in a 7 am:7 pm light-dark cycle. Hypothalamus, hippocampus, liver, and small intestine samples were collected every 3 h throughout the light period. We then assessed core diurnal clock gene expression of per1, cry1, clock, and bmal1. RESULTS: In the GAERS rats, all tissues exhibited significant changes in clock gene expression (P < 0.05) when compared to NEC. In the KASE rats, there were fewer effects of the epileptic condition in the hypothalamus, hippocampus, or small intestine (P > 0.05) compared with shams. SIGNIFICANCE: These results indicate marked diurnal disruption to core circadian clock gene expression in rats with both generalized and focal chronic epilepsy. This could contribute to epileptic symptomology and implicate the circadian system as a viable target for future treatments.


Circadian Clocks , Epilepsy, Absence , Rats , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Brain/metabolism , Gene Expression
13.
Front Neurosci ; 17: 1276495, 2023.
Article En | MEDLINE | ID: mdl-37901420

Introduction: Severe traumatic brain injury (TBI) is the world's leading cause of permanent neurological disability in children. TBI-induced neurological deficits may be driven by neuroinflammation post-injury. Abnormal activity of SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) has been associated with dysregulated immunological responses, but the role of SHIP-1 in the brain remains unclear. The current study investigated the immunoregulatory role of SHIP-1 in a mouse model of moderate-severe pediatric TBI. Methods: SHIP-1+/- and SHIP-1-/- mice underwent experimental TBI or sham surgery at post-natal day 21. Brain gene expression was examined across a time course, and immunofluorescence staining was evaluated to determine cellular immune responses, alongside peripheral serum cytokine levels by immunoassays. Brain tissue volume loss was measured using volumetric analysis, and behavior changes both acutely and chronically post-injury. Results: Acutely, inflammatory gene expression was elevated in the injured cortex alongside increased IBA-1 expression and altered microglial morphology; but to a similar extent in SHIP-1-/- mice and littermate SHIP-1+/- control mice. Similarly, the infiltration and activation of CD68-positive macrophages, and reactivity of GFAP-positive astrocytes, was increased after TBI but comparable between genotypes. TBI increased anxiety-like behavior acutely, whereas SHIP-1 deficiency alone reduced general locomotor activity. Chronically, at 12-weeks post-TBI, SHIP-1-/- mice exhibited reduced body weight and increased circulating cytokines. Pro-inflammatory gene expression in the injured hippocampus was also elevated in SHIP-1-/- mice; however, GFAP immunoreactivity at the injury site in TBI mice was lower. TBI induced a comparable loss of cortical and hippocampal tissue in both genotypes, while SHIP-1-/- mice showed reduced general activity and impaired working memory, independent of TBI. Conclusion: Together, evidence does not support SHIP-1 as an essential regulator of brain microglial morphology, brain immune responses, or the extent of tissue damage after moderate-severe pediatric TBI in mice. However, our data suggest that reduced SHIP-1 activity induces a greater inflammatory response in the hippocampus chronically post-TBI, warranting further investigation.

14.
Cells ; 12(19)2023 09 28.
Article En | MEDLINE | ID: mdl-37830592

Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.


Microglia , Neuroinflammatory Diseases , Mice , Animals , Microglia/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Signal Transduction , Brain/metabolism
15.
Epilepsia ; 64(10): 2806-2817, 2023 10.
Article En | MEDLINE | ID: mdl-37539645

OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.


Epilepsy, Temporal Lobe , Epilepsy , Humans , Adult , Rats , Male , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Rats, Wistar , Seizures/drug therapy , Electroencephalography , gamma-Aminobutyric Acid , Disease Models, Animal , Hippocampus
16.
Dev Neurobiol ; 83(5-6): 219-233, 2023.
Article En | MEDLINE | ID: mdl-37488954

Adolescent chronic pain is a growing public health epidemic. Our understanding of its etiology is limited; however, several factors can increase susceptibility, often developing in response to an acute pain trigger such as a surgical procedure or mild traumatic brain injury (mTBI), or an adverse childhood experience (ACE). Additionally, the prevalence and manifestation of chronic pain is sexually dimorphic, with double the rates in females than males. Despite this, the majority of pre-clinical pain research focuses on males, leaving a gap in mechanistic understanding for females. Given that emerging evidence has linked the gut microbiome and the brain-gut-immune axis to various pain disorders, we aimed to investigate sex-dependent changes in taxonomic and functional gut microbiome features following an ACE and acute injury as chronic pain triggers. Male and female Sprague Dawley rat pups were randomly assigned to either a maternal separation (MS) or no stress paradigm, then further into a sham, mTBI, or surgery condition. Chronically, the von Frey test was used to measure mechanical nociception, and fecal samples were collected for 16S rRNA sequencing. Animals in the surgery group had an increase in pain sensitivity when compared to mTBI and sham groups, and this was complemented by changes to the gut microbiome. In addition, significant sex differences were identified in gut microbiome composition, which were exacerbated in response to MS. Overall, we provide preliminary evidence for sex differences and ACE-induced changes in bacterial composition that, when combined, may be contributing to heterogeneity in pain outcomes.


Chronic Pain , Gastrointestinal Microbiome , Animals , Female , Male , Rats , Gastrointestinal Microbiome/genetics , Instinct , Maternal Deprivation , Nociception , Rats, Sprague-Dawley , RNA, Ribosomal, 16S/genetics , Sex Characteristics
17.
Neurosci Biobehav Rev ; 152: 105278, 2023 09.
Article En | MEDLINE | ID: mdl-37295762

Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.


Brain Injuries, Traumatic , Brain Injuries , Humans , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Social Behavior , Brain , Social Environment
18.
J Headache Pain ; 24(1): 72, 2023 Jun 14.
Article En | MEDLINE | ID: mdl-37316796

Repeat mild traumatic brain injuries (RmTBI) result in substantial burden to the public health system given their association with chronic post-injury pathologies, such as chronic pain and post-traumatic headache. Although this may relate to dysfunctional descending pain modulation (DPM), it is uncertain what mechanisms drive changes within this pathway. One possibility is altered orexinergic system functioning, as orexin is a potent anti-nociceptive neuromodulator. Orexin is exclusively produced by the lateral hypothalamus (LH) and receives excitatory innervation from the lateral parabrachial nucleus (lPBN). Therefore, we used neuronal tract-tracing to investigate the relationship between RmTBI and connectivity between lPBN and the LH, as well as orexinergic projections to a key site within the DPM, the periaqueductal gray (PAG). Prior to injury induction, retrograde and anterograde tract-tracing surgery was performed on 70 young-adult male Sprague Dawley rats, targeting the lPBN and PAG. Rodents were then randomly assigned to receive RmTBIs or sham injuries before undergoing testing for anxiety-like behaviour and nociceptive sensitivity. Immunohistochemical analysis identified distinct and co-localized orexin and tract-tracing cell bodies and projections within the LH. The RmTBI group exhibited altered nociception and reduced anxiety as well as a loss of orexin cell bodies and a reduction of hypothalamic projections to the ventrolateral nucleus of the PAG. However, there was no significant effect of injury on neuronal connectivity between the lPBN and orexinergic cell bodies within the LH. Our identification of structural losses and the resulting physiological changes in the orexinergic system following RmTBI begins to clarify acute post-injury mechanistic changes that drive may drive the development of post-traumatic headache and the chronification of pain.


Brain Concussion , Chronic Pain , Post-Traumatic Headache , Male , Rats , Animals , Rats, Sprague-Dawley , Orexins , Nociception , Chronic Pain/etiology
19.
Eur J Neurol ; 30(11): 3605-3621, 2023 Nov.
Article En | MEDLINE | ID: mdl-37329292

BACKGROUND AND PURPOSE: Headache disorders place a significant burden on the healthcare system, being the leading cause of disability in those under 50 years. Novel studies have interrogated the relationship between headache disorders and gastrointestinal dysfunction, suggesting a link between the gut-brain-immune (GBI) axis and headache pathogenesis. Although the exact mechanisms driving the complex relationship between the GBI axis and headache disorders remain unclear, there is a growing appreciation that a healthy and diverse microbiome is necessary for optimal brain health. METHODS: A literature search was performed through multiple reputable databases in search of Q1 journals within the field of headache disorders and gut microbiome research and were critically and appropriately evaluated to investigate and explore the following; the role of the GBI axis in dietary triggers of headache disorders and the evidence indicating that diet can be used to alleviate headache severity and frequency. The relationship between the GBI axis and post-traumatic headache is then synthesized. Finally, the scarcity of literature regarding paediatric headache disorders and the role that the GBI axis plays in mediating the relationship between sex hormones and headache disorders are highlighted. CONCLUSIONS: There is potential for novel therapeutic targets for headache disorders if understanding of the GBI axis in their aetiology, pathogenesis and recovery is increased.

20.
Neuroscientist ; : 10738584231176233, 2023 May 22.
Article En | MEDLINE | ID: mdl-37212380

Chronic pain is highly prevalent and burdensome, affecting millions of people worldwide. Although it emerges at any point in life, it often manifests in adolescence. Given that adolescence is a unique developmental period, additional strains associated with persistent and often idiopathic pain lead to significant long-term consequences. While there is no singular cause for the chronification of pain, epigenetic modifications that lead to neural reorganization may underpin central sensitization and subsequent manifestation of pain hypersensitivity. Epigenetic processes are particularly active during the prenatal and early postnatal years. We demonstrate how exposure to various traumas, such as intimate partner violence while in utero or adverse childhood experiences, can significantly influence epigenetic regulation within the brain and in turn modify pain-related processes. We provide compelling evidence that the burden of chronic pain is likely initiated early in life, often being transmitted from mother to offspring. We also highlight two promising prophylactic strategies, oxytocin administration and probiotic use, that have the potential to attenuate the epigenetic consequences of early adversity. Overall, we advance understanding of the causal relationship between trauma and adolescent chronic pain by highlighting epigenetic mechanisms that underlie this transmission of risk, ultimately informing how to prevent this rising epidemic.

...